
Documentation: Network Monitoring

The following is a guide to monitoring network interfaces and the network from the Solaris operating system.
Note: This document is not written by Sun.
Brendan Gregg, 09-Oct-2005, version 0.70.

Is your network busy?

The network often gets blamed when things are performing poorly, and perhaps this is correct - your network interfaces may be
running at 100% utilisation.

What command will tell you how busy the network interface is? Many sysadmins suggest using netstat -i to find out,

This shows packet counts per second, the first line is the summary since boot. How many packets would mean the interface is
busy? 100/sec, 1000/sec?

What we do know is the speed of the network interface, for this one it is 100 Mb/sec. However we have no way of telling the size
of the packets - they may be 56 byte packets or 1500 bytes. This means that the packet count is not useful, perhaps it is useful
as a yardstick of activity only. What we really need is Kb/sec...

Contents

� By System - monitoring network interface usage.
� netstat - netstat, the Solaris kitchen sink network tool.
� kstat - the Kernel Statistics framework.
� nx.se - SE Toolkit's nx.se.
� nicstat - nicstat for network interface utilisation.
� SNMP - SNMP based tools include MRTG.

� Across Network - analysing external network performance.
� ping - the classic network probe tool.
� traceroute - timing hops to destination.
� TTCP - creates test load between two hosts.
� pathchar - traceroute with throughputs, an amazing tool.
� ntop - comprhensive statistics for snooped traffic.

� By Process - determining the process responsible for traffic.
� tcptop - TCP PID summary.
� tcpsnoop - watch TCP traffic live with PID.

By System

How to monitor network usage for the entire system, usually by network interface.

netstat

The Solaris netstat command is where a number of different network status programs have been dropped, it's the kitchen
sink of network tools.

$ netstat -i 1
 input hme0 output input (Total) output
packets errs packets errs colls packets errs packets errs colls
70820498 6 73415337 0 0 113173825 6 115768664 0 0
242 0 149 0 0 246 0 153 0 0
1068 0 552 0 0 1075 0 559 0 0
[...]

Page 1 of 7Network Monitoring

3/16/2007file://E:\network.html

netstat -i as mentioned earlier, only prints packet counts. We don't know if they are big packets or small packets, and we
can't use them to accurately determine how utilised the network interface is. There are other performance monitoring tools
that plot this as a "be all and end all" value - this is wrong.

netstat -s dumps various network related counters from Kstat, the Kernel Statistics framework. This shows that Kstat does
track at least some details in terms of bytes,

However the byte values above are for TCP in total, including loopback traffic that never travelled via the network
interfaces.

netstat -k on Solaris 9 and earlier dumped all Kstat counters,

Great - so bytes by network interface are indeed tracked. However netstat -k was an undocumented switch that has now
been dropped in Solaris 10. That's ok, as there are better ways to get to Kstat, including the C library that tools such as
vmstat use - libkstat.

kstat

The Solaris Kernel Statistics framework does track network usage, and as of Solaris 8 there has been a /usr/bin/kstat
command to fetch Kstat details,

Now we just need a tool to present this in a more meaningful way.

nx.se

$ netstat -s | grep Bytes
 tcpOutDataSegs =37367847 tcpOutDataBytes =166744792
 tcpRetransSegs =153437 tcpRetransBytes =72298114
 tcpInAckSegs =25548715 tcpInAckBytes =148658291
 tcpInInorderSegs =35290928 tcpInInorderBytes =3637819567
 tcpInUnorderSegs =324309 tcpInUnorderBytes =406912945
 tcpInDupSegs =152795 tcpInDupBytes =73998299
 tcpInPartDupSegs = 7896 tcpInPartDupBytes =5821485
 tcpInPastWinSegs = 38 tcpInPastWinBytes =971347352

$ netstat -k | awk '/^hme0/,/^$/'
hme0:
ipackets 70847004 ierrors 6 opackets 73438793 oerrors 0 collisions 0
defer 0 framing 0 crc 0 sqe 0 code_violations 0 len_errors 0
ifspeed 100000000 buff 0 oflo 0 uflo 0 missed 6 tx_late_collisions 0
retry_error 0 first_collisions 0 nocarrier 0 nocanput 0
allocbfail 0 runt 0 jabber 0 babble 0 tmd_error 0 tx_late_error 0
rx_late_error 0 slv_parity_error 0 tx_parity_error 0 rx_parity_error 0
slv_error_ack 0 tx_error_ack 0 rx_error_ack 0 tx_tag_error 0
rx_tag_error 0 eop_error 0 no_tmds 0 no_tbufs 0 no_rbufs 0
rx_late_collisions 0 rbytes 289601566 obytes 358304357 multircv 558 multixmt 73411
brdcstrcv 3813836 brdcstxmt 1173700 norcvbuf 0 noxmtbuf 0 newfree 0
ipackets64 70847004 opackets64 73438793 rbytes64 47534241822 obytes64 51897911909 align_errors 0
fcs_errors 0 sqe_errors 0 defer_xmts 0 ex_collisions 0
macxmt_errors 0 carrier_errors 0 toolong_errors 0 macrcv_errors 0
link_duplex 0 inits 31 rxinits 0 txinits 0 dmarh_inits 0
dmaxh_inits 0 link_down_cnt 0 phy_failures 0 xcvr_vendor 524311
asic_rev 193 link_up 1

$ kstat -p 'hme:0:hme0:*bytes64' 1
hme:0:hme0:obytes64 51899673435
hme:0:hme0:rbytes64 47536009231

hme:0:hme0:obytes64 51899673847
hme:0:hme0:rbytes64 47536009709
[...]

Page 2 of 7Network Monitoring

3/16/2007file://E:\network.html

The SE Toolkit provides a language, SymbEL, that lets us write our own performance monitoring tools. It also contained a
collection of example tools, including nx.se which lets us identify network utilisation,

Having KB/s values lets us determine exactly how busy our network interfaces are. There is other useful information
printed above, including Coll% - collisions, NoCP/s - no can puts, and Defr/s defers, which may be evidence of network
saturation.

nicstat

nicstat is a freeware tool written in C to print out network utilisation and saturation by interface,

Fantastic. There is also an older Perl version of nicstat available.

The following are the switches available from version 0.90 of the C version,

The utilisation measurement is based on the maximum speed of the interface (if available via Kstat), divided by the current
throughput. The saturation measurement is a value that reflects errors due to saturation (no can puts, etc).

$ se nx.se 1
Current tcp RtoMin is 400, interval 1, start Sun Oct 9 10:36:42 2005

10:36:43 Iseg/s Oseg/s InKB/s OuKB/s Rst/s Atf/s Ret% Icn/s Ocn/s
tcp 841.6 4.0 74.98 0.27 0.00 0.00 0.0 0.00 0.00
Name Ipkt/s Opkt/s InKB/s OuKB/s IErr/s OErr/s Coll% NoCP/s Defr/s
hme0 845.5 420.8 119.91 22.56 0.000 0.000 0.0 0.00 0.00

10:36:44 Iseg/s Oseg/s InKB/s OuKB/s Rst/s Atf/s Ret% Icn/s Ocn/s
tcp 584.2 5.0 77.97 0.60 0.00 0.00 0.0 0.00 0.00
Name Ipkt/s Opkt/s InKB/s OuKB/s IErr/s OErr/s Coll% NoCP/s Defr/s
hme0 579.2 297.1 107.95 16.16 0.000 0.000 0.0 0.00 0.00
[...]

$ nicstat 1
 Time Int rKb/s wKb/s rPk/s wPk/s rAvs wAvs %Util Sat
10:48:30 hme0 4.02 4.39 6.14 6.36 670.73 706.50 0.07 0.00
10:48:31 hme0 0.29 0.50 3.00 4.00 98.00 127.00 0.01 0.00
10:48:32 hme0 1.35 4.23 14.00 15.00 98.79 289.00 0.05 0.00
10:48:33 hme0 67.73 19.08 426.00 207.00 162.81 94.39 0.71 0.00
10:48:34 hme0 315.22 128.91 1249.00 723.00 258.44 182.58 3.64 0.00
10:48:35 hme0 529.96 67.53 2045.00 1046.00 265.37 66.11 4.89 0.00
10:48:36 hme0 454.14 62.16 2294.00 1163.00 202.72 54.73 4.23 0.00
10:48:37 hme0 93.55 15.78 583.00 295.00 164.31 54.77 0.90 0.00
10:48:38 hme0 74.84 32.41 516.00 298.00 148.52 111.38 0.88 0.00
10:48:39 hme0 0.76 4.17 7.00 9.00 111.43 474.00 0.04 0.00
[...]

$ nicstat -h
USAGE: nicstat [-hsz] [-i int[,int...]] | [interval [count]]

 -h # help
 -i interface # track interface only
 -s # summary output
 -z # skip zero value lines
 eg,
 nicstat # print summary since boot only
 nicstat 1 # print every 1 second
 nicstat 1 5 # print 5 times only
 nicstat -z 1 # print every 1 second, skip zero lines
 nicstat -i hme0 1 # print hme0 only every 1 second

Page 3 of 7Network Monitoring

3/16/2007file://E:\network.html

SNMP

It's worth mentionining that there is also useful data available in SNMP, which is used by software such as MRTG. Here
we use Net-SNMP's snmpget to fetch some interface values,

These values are the outbound and inbound bytes for our main interface. In Solaris 10 a full description of the IF-MIB
values can be found at /etc/sma/snmp/mibs/IF-MIB.txt.

Across Network

Analysing the performance of the external network.

ping

ping is the classic network probe tool,

So I discover that mars is up, and it responds within 1 ms. Solaris 10 enhanced ping to print 3 decimal places for the times.

ping is handy to see if a host is up, but that's about all. Some people use it to test whether their application server is ok.
Hmm. ICMP is handled in the kernel without needing to call a user based process, so it's possible that a server will ping ok
while the application either responds slowly or not at all.

traceroute

traceroute sends a series of UDP packets with an increasing TTL, and by watching the ICMP time expired replies can
discover the hops to a host (assuming the hops actually decrement the TTL),

$ snmpget -v1 -c public localhost ifOutOctets.2 ifInOctets.2
IF-MIB::ifOutOctets.2 = Counter32: 10016768
IF-MIB::ifInOctets.2 = Counter32: 11932165

$ ping -s mars
PING mars: 56 data bytes
64 bytes from mars (192.168.1.1): icmp_seq=0. time=0.623 ms
64 bytes from mars (192.168.1.1): icmp_seq=1. time=0.415 ms
64 bytes from mars (192.168.1.1): icmp_seq=2. time=0.464 ms
^C
----mars PING Statistics----
3 packets transmitted, 3 packets received, 0% packet loss
round-trip (ms) min/avg/max/stddev = 0.415/0.501/0.623/0.11

$ traceroute www.sun.com
traceroute: Warning: Multiple interfaces found; using 260.241.10.2 @ hme0:1
traceroute to www.sun.com (209.249.116.195), 30 hops max, 40 byte packets
 1 tpggate (260.241.10.1) 21.224 ms 25.933 ms 25.281 ms
 2 172.31.217.14 (172.31.217.14) 49.565 ms 27.736 ms 25.297 ms
 3 syd-nxg-ero-zeu-2-gi-3-0.tpgi.com.au (220.244.229.9) 25.454 ms 22.066 ms 26.237 ms
 4 syd-nxg-ibo-l3-ge-0-2.tpgi.com.au (220.244.229.132) 42.216 ms * 37.675 ms
 5 220-245-178-199.tpgi.com.au (220.245.178.199) 40.727 ms 38.291 ms 41.468 ms
 6 syd-nxg-ibo-ero-ge-1-0.tpgi.com.au (220.245.178.193) 37.437 ms 38.223 ms 38.373 ms
 7 Gi11-2.gw2.syd1.asianetcom.net (202.147.41.193) 24.953 ms 25.191 ms 26.242 ms
 8 po2-1.gw1.nrt4.asianetcom.net (202.147.55.110) 155.811 ms 169.330 ms 153.217 ms
 9 Abovenet.POS2-2.gw1.nrt4.asianetcom.net (203.192.129.42) 150.477 ms 157.173 ms *

Page 4 of 7Network Monitoring

3/16/2007file://E:\network.html

The times may give me some idea where a network bottleneck is. We must also remember that networks are dynamic, and
this may not be the permanent path to that host.

TTCP

Test TCP is a freeware tool to test the throughput between two hops. It needs to be run on both the source and destination,
and there is a Java version of TTCP which will run on many different operating systems. Beware, it will flood the network
with traffic to perform it's test.

The following is run on one host as a reciever. The options used make the test run for a reasonable duration - around 60
seconds,

Then the following was run on the second host as the transmitter,

This shows the speed between these hosts for this test is around 11.6 Megabytes per second.

pathchar

After writing traceroute, Van Jacobson then went on to write pathchar - an amazing tool that identifys network bottlenecks.
It operates like traceroute, but rather than printing response time to each hop it prints bandwidth between each pair of
hops.

This tool works by sending "shaped" traffic over a long interval and carefully measuring the response times. It doesn't
flood the network like TTCP does.

ntop

ntop is a tool that sniffs network traffic and provides comprehensive reports via a web interface. It is also available on

10 so-6-0-0.mpr3.sjc2.us.above.net (64.125.27.54) 240.077 ms 239.733 ms 244.015 ms
11 so-0-0-0.mpr4.sjc2.us.above.net (64.125.30.2) 224.560 ms 228.681 ms 221.149 ms
12 64.125.27.102 (64.125.27.102) 241.229 ms 235.481 ms 238.868 ms
13 * *^C

$ java ttcp -r -n 65536
Receive: buflen= 8192 nbuf= 65536 port= 5001

$ java ttcp -t jupiter -n 65536
Transmit: buflen= 8192 nbuf= 65536 port= 5001
Transmit connection:
 Socket[addr=jupiter/192.168.1.5,port=5001,localport=46684].
Transmit: 536870912 bytes in 46010 milli-seconds = 11668.57 KB/sec (93348.56 Kbps).

pathchar 192.168.1.10
pathchar to 192.168.1.1 (192.168.1.1)
 doing 32 probes at each of 64 to 1500 by 32
 0 localhost
 | 30 Mb/s, 79 us (562 us)
 1 neptune.drinks.com (192.168.2.1)
 | 44 Mb/s, 195 us (1.23 ms)
 2 mars.drinks.com (192.168.1.1)
2 hops, rtt 547 us (1.23 ms), bottleneck 30 Mb/s, pipe 7555 bytes

Page 5 of 7Network Monitoring

3/16/2007file://E:\network.html

sunfreeware.com.

Now you connect via a web browser to localhost:3000.

By Process

How to monitor network usage by process. Recently the addition of DTrace to Solaris 10 has allowed the creation of the first
network by process tools.

tcptop

This is a DTrace based tool from the freeware DTraceToolkit which gives a summary of TCP traffic by system and by
process,

This version of tcptop will examine newly connected sessions (while tcptop has been running). In the above we can see
PID and SIZE columns, this is tracking TCP traffic that has travelled on external interfaces. The TCPin and TCPout
summaries also tracks localhost TCP traffic.

tcpsnoop

This is a DTrace based tool from the DTraceToolkit which prints TCP packets live by process,

ntop
ntop v.1.3.1 MT [sparc-sun-solaris2.8] listening on [hme0,hme0:0,hme0:1].
Copyright 1998-2000 by Luca Deri <deri@ntop.org>
Get the freshest ntop from http://www.ntop.org/

Initialising...
Loading plugins (if any)...
WARNING: Unable to find the plugins/ directory.
Waiting for HTTP connections on port 3000...
Sniffying...

tcptop 10
Sampling... Please wait.
2005 Jul 5 04:55:25, load: 1.11, TCPin: 2 Kb, TCPout: 110 Kb

 UID PID LADDR LPORT FADDR FPORT SIZE NAME
 100 20876 192.168.1.5 36396 192.168.1.1 79 1160 finger
 100 20875 192.168.1.5 36395 192.168.1.1 79 1160 finger
 100 20878 192.168.1.5 36397 192.168.1.1 23 1303 telnet
 100 20877 192.168.1.5 859 192.168.1.1 514 115712 rcp

tcpsnoop
 UID PID LADDR LPORT DR RADDR RPORT SIZE CMD
 100 20892 192.168.1.5 36398 -> 192.168.1.1 79 54 finger
 100 20892 192.168.1.5 36398 <- 192.168.1.1 79 66 finger
 100 20892 192.168.1.5 36398 -> 192.168.1.1 79 54 finger
 100 20892 192.168.1.5 36398 -> 192.168.1.1 79 56 finger
 100 20892 192.168.1.5 36398 <- 192.168.1.1 79 54 finger
 100 20892 192.168.1.5 36398 <- 192.168.1.1 79 606 finger
 100 20892 192.168.1.5 36398 -> 192.168.1.1 79 54 finger
 100 20892 192.168.1.5 36398 <- 192.168.1.1 79 54 finger
 100 20892 192.168.1.5 36398 -> 192.168.1.1 79 54 finger
 100 20892 192.168.1.5 36398 -> 192.168.1.1 79 54 finger

Page 6 of 7Network Monitoring

3/16/2007file://E:\network.html

This version of tcpsnoop will examine newly connected sessions (while tcpsnoop has been running). In the above we can
see a PID column and packet details, this is tracking TCP traffic that has travelled on external interfaces.

Back to Brendan Gregg's Homepage

Created: 09-Oct-2005
Last updated: 09-Oct-2005
Copyright (c) 2005 Brendan Gregg

 100 20892 192.168.1.5 36398 <- 192.168.1.1 79 54 finger
 0 242 192.168.1.5 23 <- 192.168.1.1 54224 54 inetd
 0 242 192.168.1.5 23 -> 192.168.1.1 54224 54 inetd
[...]

Page 7 of 7Network Monitoring

3/16/2007file://E:\network.html

